Quiz E23.2

Nuclear physics(HL)

1. An alpha particle with kinetic energy *E* MeV is directed at a stationary nucleus of $\frac{62}{28}$ Ni. Which expression gives the distance of closest approach to the centre of the nucleus in meters?

A
$$\frac{9 \times 10^{9} \times 56 \times (1.6 \times 10^{-19})^{2}}{E}$$

B
$$\frac{9 \times 10^{3} \times 56 \times (1.6 \times 10^{-19})^{2}}{E}$$

C
$$\frac{9 \times 10^{9} \times 56 \times 1.6 \times 10^{-19}}{E}$$

D
$$\frac{9 \times 10^{3} \times 56 \times 1.6 \times 10^{-19}}{E}$$

- 2. What is the likely decay of an unstable nucleus with too many neutrons?
 - A Alpha decay
 - **B** Beta minus decay
 - **C** Beta plus decay
 - **D** Gamma decay
- 3. What provides evidence for the existence of the strong nuclear force?
 - A Deviations from Rutherford scattering
 - B The discrete nature of alpha and gamma energies in radioactive decay
 - **C** The existence of isotopes
 - **D** The shape of the binding energy curve
- **4.** The nuclear radius of ${}_{4}^{6}$ Be is *R* and the density of the nucleus is ρ . What is the nuclear radius and nuclear density of ${}_{20}^{48}$ Ca ?

	Nuclear radius	Nuclear density
A	2 <i>R</i>	$\frac{\rho}{2}$
В	2 <i>R</i>	ρ
С	8 <i>R</i>	<u>ρ</u> 2
D	8 <i>R</i>	ρ

- 5. The binding energy per nucleon is roughly constant for large nuclei. What is this evidence for?
 - A The attractive nature of the strong nuclear force
 - B The existence of neutrons inside the nucleus
 - **C** The short range of the strong nuclear force
 - **D** The strong nuclear force acts on neutrons
- 6. Three statements are made for the strong nuclear force:
 - I It acts on protons
 - II It acts on neutrons
 - III It acts on electrons

Which statements are correct?

- A I and II
- **B** I and III
- C II and III
- D I, II and III
- 7. The half-life of radioactive element X is T and that of element Y is 2T. A sample of nuclei X and a sample of nuclei Y have the same initial activity. What is the ratio $\frac{N_x}{N_y}$ of nuclei that have not yet decayed after a time 2T?
 - **A** 1 **B** $\frac{1}{2}$ **C** $\frac{1}{4}$ **D** $\frac{1}{8}$
- 8. A radioactive nucleus ${}^{A}_{Z}X$ decays into the stable isotope ${}^{A-4}_{Z-2}Y$ with a half life of *T*. A pure sample of ${}^{A}_{Z}X$ is prepared. What is the ratio $\frac{\text{mass of } {}^{A-4}_{Z-2}Y}{\text{mass of } {}^{A-4}_{Z}X}$ after a time 2*T*?
 - **A** 2 **B** 3 **C** $3 \times \frac{A-4}{A}$ **D** $3 \times \frac{A}{A-4}$
- **9.** The decay constant of a radioactive nucleus is $\lambda = 1 \text{ hr}^{-1}$. A sample of these nuclei is prepared. Which of the following expressions is **not** an estimate of the probability of decay of a nucleus in this sample in the course of 1 hour?

A
$$1-e^{-1}$$
 B e^{-1} **C** $1-(1-\frac{1}{60})^{60}$ **D** $1-(1-\frac{1}{3600})^{3600}$

- **10.** In beta minus decay, the daughter nucleus gains very little energy. Which statement is correct about the rest of the energy released?
 - A Most of this energy is carried by the electron
 - **B** Most of this energy is carried by the antineutrino
 - **C** It is shared equally by the electron and the antineutrino
 - **D** It is shared by the electron and the antineutrino

Quiz E23.2		
Answers		
1	D	
2	В	
3	Α	
4	В	
5	С	
6	Α	
7	С	
8	С	
9	В	
10	D	